ON IMPROVEMENT OF THERMAL NEUTRON SCATTERING LIBRARIES ($S(\alpha, \beta)$) data) FOR H_2O and D_2O

D. Roubtsov

CRL-AECL, Chalk River, Canada

J.I. Márquez Dámian

Centro Atómico Bariloche, Argentina

et al.

BNL, November, 2014

This work is International Collaboration project

in the area of *Nuclear Data* R&D for Nuclear Science and Technology applications

Centro Atómico Bariloche (CAB), Argentina:

J.I. Márquez Dámian, J.R. Granada

CRNL, AECL, Canada

D. Roubtsov, J.C. Chow,
and K. Kozier (*retired 2012*)

Motivation

Thermal Scattering Laws (**TSL** or $S(\alpha,\beta)$ data) for liquids, H_2O and D_2O , are available in the **evaluated nuclear data libraries**, such as, **ENDF/B-VII.0** (2006) \rightarrow **ENDF/B-VII.1** (2011) / USA / **JEFF 3.1** (2005), **JEFF 3.2** (2014) / EU / also in JENDL /Japan/, BROND (ROSFOND).

There are also **multi-group** TSL libraries (*CLES*) developed by Kyoto University group (Morishima, Edura *et al.*), for cold moderators.

What can be improved in modern evaluated $S(\alpha,\beta)$ data

from the standpoint of (Reactor Physics) Applications (?) from the standpoint of advances in computational CMP?

TSL: liquid D_2O , and D_2O vs. H_2O

<u>Total cross sections</u>: $n + D_2O$ vs. $n + H_2O$ at E < 10 eV

 $\sigma_{tot}(E)$ in barn per molecule for D_2O ($\approx {}^2H_2^{16}O$) in heavy water at Room Temp (RT)

Look at E near $E_{th} = 0.0253 \text{ eV}$: for D_2O at RT, we have "heavy water challenge": $(Exp. - Calc.) / Calc. \approx -8.4\%$ (using B-VII.0 $S(\alpha,\beta)$ for D-in-D₂O and FG model for ¹⁶O)

$S(\alpha,\beta)$ data for water: outline of our approach

- New <u>evaluation</u> (in ENDF format) is based on combining molecular dynamics (MD) simulations and experimental data, and the resulting <u>models</u> are implemented / compatible in / with LEAPR module of NJOY (nuclear data post-processing code, LANL)
- The key points for building CAB models are:
- 1. use of molecular (self)diffusion for translational motion of H₂O / D₂O (instead of free gas approximation (FG) used in all evaluated ND libraries);
- 2. continuous **vibrational spectra** computed from molecular dynamics (**MD**) simulation at a given thermodynamic state of the liquid (p, T) and $\rho(p, T)$ (instead of derived / adjusted from neutron scattering experiments);
- 3. a more precise description of **the structure of liquid**: models for D **and** O in D₂O are based on **experimental results** (instead of using the incoherent approximation in ENDF/B-VI or the Lennard-Jones **model** for D-D structure in JEFF 3.1 and ENDF/B-VII.0 \rightarrow VII.1)
- 4. better **numerics** (*e.g.*, extended grid(s), and NJOY data processing options revisited, also with NJOY (NJOY99up396) patches in leapr, thermr)
- The resulting scattering kernels / cross sections are an improvement over existing evaluations:
 they are compared with measurements of double differential scattering cross sections,
 quasi-elastic neutron scattering measurements, angular distributions of out-scattered
 neutrons, average cosine of the scattering angle, and total cross sections.

H₂O: from gen. vibrational spectrum $\rho(E)$ to cross sections (for H-1)

low-energy modes (E < 40 meV): based on modeling (use MD code GROMACS) AFCL EACL

0-16 in H₂**0**, Room T (1)

- At E ~ 10 eV, O-16 contributes ~ 8.5 % to the scattering x-sections of H₂O (barn per mol.)
- At E = 0.0253 eV, O-16 (FG) contributes ~ 3.6 % to the scattering x-sections of H₂O (RT) and 3.6% \rightarrow 3.1% if we use CAB model for S(α , β) with $\rho_{\text{O-in-H2O}}(E)$ and structure factor $S_{\text{O}}(q)$

0-16 in H₂**0**, Room **T** (2)

- Plot the ratio, $\sigma_s(E)/\sigma_{s, th}$, for H-1 in H₂O and O-16, T = 293.6 K.
- For example, at E = 0.0253 eV, $σ_s(E; O-16) / σ_{s, th} ≈ 1.032$ (FG) and ≈ 0.88 (O in H₂O)

$S(\alpha, \beta)$ for D_2O : need $\rho_{ph, i}(E)$ and $S_i(q)$, and C_i

• $\rho_{ph,i}(E) \propto E^2$ at E < 5 meV and $\rho_{ph,i}(E) = 0$ at $E > E_{cut} \approx 0.12$ eV and $S_i(q) > 0$ AECL EACL

Result (D20): total cross sections in barn (per mol.)

Total cross sections for heavy water (D_2O) at T = 294 K (exp. data: **Kropff-1984**) are compared with calculations based on the **CAB model**, and ENDF/**B-VII.0** (~ IKE model) and ENDF/**B-VI** (~ GA model).

Ellipses mark the differences in the total cross sections at the energies which are very important for accurate modeling of the <u>critical systems</u> with the <u>thermal neutron spectrum</u>.

We plot **Maxwellian spectrum** at RT ($T_{eff} = 294 \text{ K}$, in a.u.), which would be expected for fully thermalized neutrons (shown for reference).

$0-16 \text{ in } D_2O (RT)$

- At E ~ 10 eV, O-16 contributes ~ 36 % to the scattering cross sections of D₂O (barn per mol.)
- At E = 0.0253 eV,

O-16 contributes ~ 26 % to the scattering cross sections of D₂O (using CAB model = S(α , β) with $\rho_{\text{O-in-D2O}}(E)$ and structure factor $S_{\text{O}}(q)$, **at RT**), $\sigma_{\text{s}}(E; \text{O-16}) / \sigma_{\text{s, th}} \approx 0.95$, and

O-16 (FG) contributes ~ 25 % to the scattering cross sections of D₂O in ENDF/B-VII model, RT

Again, $E \sim 1$ (4) – 10 (100) eV asymptotic of σ_s (σ_{tot}) vs. E: σ_s (E) \sim const, and where are we?

- H₂O: Dilg-1975 original result for H₂O,
 σ_{tot}(H₂O, E = 132 eV) = 44.731 ± 0.027 barn per molecule (± **0.06**%!), in comparison with other (similar) results found in EXFOR
- D₂O: Dilg-1971 original result for D₂O, $\sigma_{tot}(D_2O, E = 130 \text{ eV}) = 10.54 \pm 0.02 \text{ barn per molecule } (\pm 0.19\% !)$, in comparison with other (similar) results found in EXFOR.

Testing $S(\alpha, \beta)$: often need to run with FG model

• We expect that k_{eff} (CAB D_2O) < k_{eff} (B-VII.0 D_2O), but what is $dk = k_{eff}$ (B-VII.0 D_2O) - k_{eff} (CAB D_2O) = ?

answer: dk ≈ 100 pcm for ZED2-HWR-EXP-001 (ZED-2 reactor in CRL-AECL)

 $|dk_{CAB-VII.0}| < \Delta k_{Bench}$: not conclusive...

A AECL EACL

Testing: (almost) all thermal critical cases, D₂O moderated / reflected, near RT, from ICSBEP handbook

- Calculate **C/E ratio**, with **C** = k_{eff} calculated using MCNP5, lib. = ENDF/B-VII.0; **E** = benchmark $k_{eff} \pm \Delta k_{bench}$
- overall, it is an improvement if we change B-VII.0 D₂O S(α , β) \rightarrow CAB D₂O S(α , β)

(the <u>average</u> change in the multiplication factor is $dk_{CAB-VII.0} \approx 5.43$ mk = 543 pcm)

Toward new evaluation of heavy water $D_2OS(\alpha,\beta)$: from RT to 50-70 deg C

• Temp. nodes (ENDF/B-VII *vs.* JEFF-3): e.g., T = 323.15 K

Toward new evaluation of heavy water D_2O $S(\alpha,\beta)$: from RT to 50 deg. C

- New experiments (July 2014) at the LENS facility in Indiana University (IU, USA)
- Prof. David V. Baxter, http://www.indiana.edu/~iubphys/faculty/baxterd.shtml

Toward a new evaluation of heavy water $D_2OS(\alpha,\beta)$: we extend # of T nodes

Dritsa: ~ 200 deg. C; More data at high T?

- Add one low temperature node (~ 10 deg. C) and combine ENDF/B-VII and JEFF-3 temperature nodes (up to 600.0 K at the moment)
- Liquid D_2O : at T > 3.8 deg. C = 276.95 K (at p = 1 atm.)
- At $T > \sim 371$ deg. C ~ 643.9 K (p > p_c): supercritical fluid (heavy water) $\stackrel{\frown}{AECL}$ EACL

Toward a new evaluation of water $H_2O/D_2OS(\alpha,\beta)$: we extend # of T nodes

 H₂O: can go beyond incoherent approximation to get scattering cross sections for cold neutrons better (E < 1 meV)

A AECL EACL

Conclusion

- The new evaluation (in endf) for thermal scattering law files for heavy / light water is under development and testing.
 It represents an improvement over existing scattering law files available in the modern evaluated nuclear data libraries (ENDF/B, JEFF, JENDL)
- When the new thermal scattering libraries are applied to the calculation of international neutron criticality benchmarks (ICSBEP Handbook), we find a significant (up to ~ 11 mk = 1100 pcm) difference in the results of multiplication factors, and improving the calculation in ≈ 60% of the critical cases.
- New measurements started: at IU-LENS (with D. Baxter, 2014) and also at CRL (NRU reactor n-beam and using a triple-axis spectrometer)
 - J.I. Márquez Dámian, J.R. Granada, and D.C. Malaspina, "*CAB models for water: A new evaluation of the thermal neutron scattering laws for light and heavy water in ENDF-6 format*," Annals of Nuclear Energy, Vol. **65**, pp. 280-289, **2014** (March).
 - J.I. Márquez Dámian, J.R. Granada, and D. Roubtsov, "Improvement on the calculation of D_2O moderated critical systems with new thermal neutron scattering libraries,"

 Annals of Nuclear Energy, Vol. **71**, pp. 206-210, **2014** (September).

A AECL EACL

